Skip to main content

Historical Perspective

 The electronics industry has developed at a breakneck pace over the last two decades, owing primarily to rapid advancements in integration technologies and large-scale systems design - in other words, the introduction of VLSI. The number of integrated circuit applications in high-performance computing, telecommunications, and consumer electronics has been steadily increasing at a rapid rate.The requisite computational power (or, in other words, intelligence) of these applications is typically the driving force behind the field's rapid growth.

The need to incorporate these functions in a small system/package is growing as more complex functions are needed in various data processing and telecommunications devices. For almost three decades, the degree of integration, as calculated by the number of logic gates in a monolithic chip, has been steadily increasing, owing to rapid advances in processing and interconnect technology.The given figure shows the evolution of logic complexity in integrated circuits over the last three decades. .

Figure: Evolution of logic complexity in integrated circuits.

The  important message here is that the logic complexity per chip has been (and still is) increasing exponentially. The monolithic integration of a large number of functions on a single chip usually provides:

  •  ompactness, because less area/volume
  • Less power consumption
  • At system level testing requirements are less 
  • Mainly due to improved on-chip interconnects it is highly reliable
  • Higher speed, due to significantly reduced interconnection length
  • Significant cost savings

 Development in device manufacturing technology, and especially the steady reduction of minimum feature size (minimum length of a transistor or an interconnect realizable on chip) is important.


Comments

Popular posts from this blog

INTRODUCTION TO VLSI and Y chart

 Very-large scale integration (VLSI) is the process of incorporating thousands of transistors into a single chip to create an integrated circuit (IC) . VLSI got its start in the 1970s, when complex semiconductor and communication technologies were being developed.   The  microprocessor  is a VLSI device. A limited set of functions were performed by most ICs prior to the introduction of VLSI technology. An electronic circuit contains a CPU, ROM, RAM, etc. IC designers can integrate all of these functions into a single chip using VLSI. Thanks to rapid advancements in large-scale integration technologies and device design applications, the electronics industry has grown at a breakneck rate in recent decades.Since the introduction of very large scale integration (VLSI) designs, the number of integrated circuits (ICs) used in high-performance computing, controllers, telecommunications, image and video processing, and consumer electronics has been increasingly growing...

Concepts of Regularity, Modularity and Locality

        By splitting the large structure into many sub-modules, the hierarchical design approach eliminates design complexity. To make the process easier, other design principles and approaches are usually needed. Regularity ensures that a large system's hierarchical decomposition can produce as many simple and identical blocks as possible.The design of array structures made up of similar cells, such as a parallel multiplication array, is a good example of regularity. Regularity can be seen at all levels of abstraction: uniformly sized transistors simplify the design at the transistor stage. Identical gate structures can be used at the logic level, and so on.      The different functional blocks that make up the larger structure must have well-defined functions and interfaces, which is referred to as modularity in design. Since there is no doubt about the purpose and signal interface of these blocks, modularity allows each block or module to be co...

VLSI Design Flow

                                        Figure-:  A  simplified view of VLSI design flow. Figure  depicts the VLSI design flow in a more condensed manner, taking into account the various design representations, or abstractions  such as design- behavioural, logic, circuit, and mask layout. It's worth noting that concept verification is crucial at any stage of this procedure.Failure to properly verify a design in its early stages often results in substantial and costly re-design at a later level, increasing time-to-market. Although the design process has been represented in a linear fashion for ease of understanding, there are several iterations back and forth in practise, particularly between any two neighbouring steps, and sometimes even between pairs of steps that are far apart. Although top-down design flow is effective at controlling the design process, there i...